3,587 research outputs found

    Dissipation Efficiency in Turbulent Convective Zones in Low Mass Stars

    Full text link
    We extend the analysis of Penev et al. (2007) to calculate effective viscosities for the surface convective zones of three main sequence stars of 0.775Msun, 0.85Msun and the present day Sun. In addition we also pay careful attention to all normalization factors and assumptions in order to derive actual numerical prescriptions for the effective viscosity as a function of the period and direction of the external shear. Our results are applicable for periods that are too long to correspond to eddies that fall within the inertial subrange of Kolmogorov scaling, but no larger than the convective turnover time, when the assumptions of the calculation break down. We find linear scaling of effective viscosity with period and magnitudes at least three times larger than the Zahn (1966, 1989) prescription.Comment: 13 pages, 3 figures Effective viscosity scaling changed by a factor of ~100. More details provided for the numerical model

    A Robust Measure of Tidal Circularization in Coeval Binary Populations: The solar-type spectroscopic Binary Population in The Open Cluster M35

    Full text link
    We present a new homogeneous sample of 32 spectroscopic binary orbits in the young (~ 150 Myr) main-sequence open cluster M35. The distribution of orbital eccentricity vs. orbital period (e-log(P)) displays a distinct transition from eccentric to circular orbits at an orbital period of ~ 10 days. The transition is due to tidal circularization of the closest binaries. The population of binary orbits in M35 provide a significantly improved constraint on the rate of tidal circularization at an age of 150 Myr. We propose a new and more robust diagnostic of the degree of tidal circularization in a binary population based on a functional fit to the e-log(P) distribution. We call this new measure the tidal circularization period. The tidal circularization period of a binary population represents the orbital period at which a binary orbit with the most frequent initial orbital eccentricity circularizes (defined as e = 0.01) at the age of the population. We determine the tidal circularizationperiod for M35 as well as for 7 additional binary populations spanning ages from the pre main-sequence (~ 3 Myr) to late main-sequence (~ 10 Gyr), and use Monte Carlo error analysis to determine the uncertainties on the derived circularization periods. We conclude that current theories of tidal circularization cannot account for the distribution of tidal circularization periods with population age.Comment: 37 pages, 9 figures, to be published in The Astrophysical Journal, February 200

    Determining fPAR and leaf area index of several land cover classes in the Pot River and Tsitsa River catchments of the Eastern Cape, South Africa

    Get PDF
    Determining the quantum (both annual maxima and minima) and the temporal variation in the leaf area index (LAI), and the fraction of photosynthetically active radiation (fPAR), are three fundamental biophysical characteristics of the plant canopy that should parameterise ecophysiological models of water use (evapotranspiration) and carbon sequestration. Although Earth observation provides values and time series for both these parameters, in-field validation of these values is necessary. Following a very wet summer season, we conducted field surveys of several land cover classes within two quaternary catchments in the Eastern Cape province, South Africa, to determine maximum values of LAI and fPAR that occur within each of these land cover classes. To assist in up-scaling these point measures to the landscape, we present a regression relationship between Landsat 8 NDVI and LAI measured using an Accupar Ceptometer (r2 = 0.92). Peak wet season LAI varied from extremely high (>7.0) under the canopy of invasive black wattle (Acacia mearnsii) trees to ~2.0 under the canopy of a Eucalyptus plantation. Ungrazed native grassland displayed an intermediate LAI value of 3.84. The black wattle stand absorbed 97% of the available PAR, whereas the mature Eucalyptus plantation only absorbed 66% of PAR.Keywords: agroforestry, ecosystem ecology, remote sensin

    Exploring the invasion of rangelands by Acacia mearnsii (black wattle): biophysical characteristics and management implications

    Get PDF
    Australian acacias have spread to many parts of the world. In South Africa, species such as A. mearnsii and A. dealbata are invasive. Consequently, more effort has focused on their clearing. In a context of increasing clearing costs, it is crucial to develop innovative ways of managing invasions. Our aim was to understand the biophysical properties of A. mearnsii in grasslands as they relate to grass production and to explore management implications. Aboveground biomass (AGB) of A. mearnsii was determined using a published allometric equation in invaded grasslands of the northern Eastern Cape, South Africa. The relationships among the A. mearnsii leaf area index (LAI), normalised difference vegetation index (NDVI) and AGB were investigated. The influence of A. mearnsii LAI and terrain slope on grass cover was also investigated. Strong linear relationships between NDVI, LAI and AGB were developed. Acacia mearnsii canopy adversely impacted grass production more than terrain slope (p < 0.05) and when LAI approached 2.1, grass cover dropped to below 10% in infested areas. Reducing A. mearnsii canopy could promote grass production while encouraging carbon sequestration. Given the high AGB and clearing costs, it may be prudent to adopt the ‘novel ecosystems’ approach in managing infested landscapes.Keywords: grassland, invasive plants, landscape ecology, rangeland conditio

    Post Main Sequence Orbital Circularization of Binary Stars in the Large and Small Magellanic Clouds

    Get PDF
    We present results from a study of the orbits of eclipsing binary stars (EBs) in the Magellanic Clouds. The samples comprise 4510 EBs found in the Large Magellanic Cloud (LMC) by the MACHO project, 2474 LMC EBs found by the OGLE-II project (of which 1182 are also in the MACHO sample), 1380 in the Small Magellanic Cloud (SMC) found by the MACHO project, and 1317 SMC EBs found by the OGLE-II project (of which 677 are also in the MACHO sample); we also consider the EROS sample of 79 EBs in the bar of the LMC. Statistics of the phase differences between primary and secondary minima allow us to infer the statistics of orbital eccentricities within these samples. We confirm the well-known absence of eccentric orbit in close binary stars. We also find evidence for rapid circularization in longer period systems when one member evolves beyond the main sequence, as also found by previous studies.Comment: 37 pages, 16 figures, accepted for publication in ApJ. Added a new reference and updated information on on line materia

    Thermoelectric transport in strained Si and Si/Ge heterostructures

    Full text link
    The anisotropic thermoelectric transport properties of bulk silicon strained in [111]-direction were studied by detailed first-principles calculations focussing on a possible enhancement of the power factor. Electron as well as hole doping were examined in a broad doping and temperature range. At low temperature and low doping an enhancement of the power factor was obtained for compressive and tensile strain in the electron-doped case and for compressive strain in the hole-doped case. For the thermoelectrically more important high temperature and high doping regime a slight enhancement of the power factor was only found under small compressive strain with the power factor overall being robust against applied strain. To extend our findings the anisotropic thermoelectric transport of an [111]-oriented Si/Ge superlattice was investigated. Here, the cross-plane power factor under hole-doping was drastically suppressed due to quantum-well effects, while under electron-doping an enhanced power factor was found. With that, we state a figure of merit of ZT=0.2=0.2 and ZT=1.4=1.4 at T=\unit[300]{K} and T=\unit[900]{K} for the electron-doped [111]-oriented Si/Ge superlattice. All results are discussed in terms of band structure features

    Bi2Te3Bi_2Te_3: Implications of the rhombohedral k-space texture on the evaluation of the in-plane/out-of-plane conductivity anisotropy

    Full text link
    Different computational scheme for calculating surface integrals in anisotropic Brillouin zones are compared. The example of the transport distribution function (plasma frequency) of the thermoelectric Material \BiTe near the band edges will be discussed. The layered structure of the material together with the rhombohedral symmetry causes a strong anisotropy of the transport distribution function for the directions in the basal (in-plane) and perpendicular to the basal plane (out-of-plane). It is shown that a thorough reciprocal space integration is necessary to reproduce the in-plane/out-of-plane anisotropy. A quantitative comparison can be made at the band edges, where the transport anisotropy is given in terms of the anisotropic mass tensor.Comment: 7 pages, 6 figs., subm. to J. Phys. Cond. Ma

    Energy Flow in Acoustic Black Holes

    Full text link
    We present the results of an analysis of superradiant energy flow due to scalar fields incident on an acoustic black hole. In addition to providing independent confirmation of the recent results in [5], we determine in detail the profile of energy flow everywhere outside the horizon. We confirm explicitly that in a suitable frame the energy flow is inward at the horizon and outward at infinity, as expected on physical grounds.Comment: 8 pages, 9 figures, Comments added to discussion of energy flow and introductory section abbreviate
    corecore